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ALTERNATIVE PROCEDURE FOR VISCOELASTIC ANALYSIS OF PLATES
BY THE BOUNDARY ELEMENT METHOD

Rodrigo Couto da Costa*, Humberto Breves Coda® & Wilson Sérgio Venturini®

Abstract

This study presents an alternative Boundary Element formulation for the analysis of viscoelastic plate in bending
without using convolution processes with internal cells, Laplace transforms or special fundamental solutions. Two
different constitutive models are considered. The first and simplest one is the Kelvin-Voigt model that does not
take into account instantaneous response. The second, Boltzmann model, considers instantaneous and time
dependent behavior of materials. An appropriate kinematical relation is combined with differential viscoelastic
constitutive representations in order to generate the time marching scheme. Spatial approximations are used for
boundary elements before any time solution. The proposed technique results in a time marching process that does
not use relaxation functions to recover viscous behavior. Some examples are shown in order to demonstrate the
accuracy and stability of the technique.
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1 INTRODUCTION

Various engineering structures are constituted by plates in bending and the good
representation of these elements for general material or subjected to any load condition is necessary.
One of these situations is related to the material viscoelastic behavior as for example, polymers,
concrete, wood and others.

Usual numerical viscoelastic analysis are based on relaxation functions [1-4] together with a
convenient incremental scheme where the convolutional aspect of the viscous behavior is transformed
into discrete contributions to the elastic response. These incremental techniques calculate viscous
residuals by local (point by point) stress decay considerations, like viscoplastic processes [5-7], usually
requiring cells or other related process to do the domain integrals.

Other possibilities are also present in literature, as doing Laplace transforms or using
fundamental solutions for viscoelasticity. The last strategy depends upon the existence of fundamental
solutions for each class of problem to be solved.

An alternative procedure to solved viscoelastic problems has been proposed and successfully
tested for two and three dimensional solids by [8-12]. This strategy is based on static fundamental
solutions and differential viscoelastic constitutive relations that provide accurate results without using
domain integrals and with small computational effort.

Encouraged by the absence of cells and the small amount of computations the authors
extended here the previous procedure to treat viscoelastic plate in bending problems by the boundary
element method. The adopted kinematics is the Kirchhoff one and the constitutive relations are the
Kelvin-Voigt and the Boltzmann ones.

An important characteristic of the proposed technique is that the experimental results for creep
and relaxation functions can be used to achieve the necessary viscous parameters used in the
differential constitutive relations.
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14 Procedimento alternativo para analise viscoelastica de placas pelo método dos elementos de contorno

At the end of the paper, selected examples are shown in order to demonstrate the accuracy
and stability of the formulation. Along all text Einstein notation is adopted.

2 RHEOLOGICAL MODELS

2.1 Differential representation of the Kelvin-Voigt

The Kelvin-Voigt viscoelastic model can be represented by the simple parallel arrangement of a spring
and a dashpot, as depicted in figure 1.

€
Figure 1 — Kelvin-Voigt model.
The two parts of this model develop the same strain, i.e:

E =& =& (1)

where ¢ is the total strain, &; is the elastic strain ¢ is the viscous strain tensor..

However the total stress developed in the arrangement is the summation of the viscous and elastic
parts, as

O-u' = O-i/' + O-u (2)

where o, is the total stress, o, is the elastic stress and o, is the viscous stress.

The elastic and viscous stress are related to strain as follows:
e Im e Im

O-i/' - Cif 8/”, - Ci/' glm (3)
v Im v Im o

0, =M1,¢,=1,¢, 4)
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where C"is the elastic strain, &, is the time strain rate and 1" is the viscous constitutive tensor.

The fourth order tensors C" and n,"are given by:

=150, +u(55, +5.5,) (5)

n =645, +0,u(55,+5,5,) (6)

where A e p are the elastic constants given by:

vE

A= (7)

(1 + v)(l — 21/)

G £ 8
/J = =

2(1+v)

0, and 6, are material viscous coefficients.
The viscosity tensor n'jm can be simplified adopting a unique viscous parameter y as:
y=(0,+6)12 ©)
77;’” = 7/[/1/51)’5/”1 + ﬂ(ailajm + 5[’”15][ )] = }/C:m (10)
Introducing equations (3) and (10) into equation (2), one finds:
o, =C's, +yC'é, (11)

2.2 Differential representation of the Boltzmann model

The Boltzmann model is represented by a serial arrangement between an elastic part and the Kelvin-

Voigt model, as described by figure 2.
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16 Procedimento alternativo para analise viscoelastica de placas pelo método dos elementos de contorno

Ee Eve
Figure 2 — Boltzmann Model.

The elastic part of the model is responsible by the instantaneous response of the material. The stress at

all parts of the model is the same, therefore:

o =0 =o" (12)

where o, is the total stress tensor, G:, is the elastic stress and c:e is the viscoelastic one.
For this model the total strain ¢ is the summation of elastic (instantaneous) strain sj and the

viscoelastic strain sj e

E =€ +¢& (13)

Im

By simplicity, one considers the same poison ratio for both parts of the model and, as for the Kelvin-

Voigt model, only one viscous parameter. From these assumptions one writes:

e Sim e m e
o, =C'e =EC'¢, (14)
ol =Crel = £ 9
v m < ve Im ve
Gij - 77,',' g/m =Y E veCl/ g/m (16)

where G;' is the stress acting at the spring parallel to the dashpot at the viscous part of the Boltzmann
model, 0; is the viscous stress at the dashpot, E_ is the elastic modulus at the instantaneous part of
the arrangement, E_ is the elastic modulus at the viscous part of the model, C'Jm and CA)'Jm are elastic

tensors written regarding E andE .
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The auxiliary tensor C'Jm is written without unity, resulting:
=150, +1(50,+5,5,) (17)
where A and [t are nondimensional versions of Lamé constants, i.e.:

|4

S — (18)

(1+v)(1-2v)

1

U=G=——"— (19)
2(1+v)

For the viscoelastic part one writes:

o, = O';e = O';I + O_,: = EWC;me; + 7/EVEC:16"[$ (20)

Differentiating equation (13) regarding time results the following relation:

E =& +¢& (21)

where ¢ is the total time strain rate, & is the elastic time strain rate and £ is the viscoelastic time

strain rate.

One isolates the elastic and viscoelastic strains from equations (14) and (20) resulting:

1
.= C, 0, (22)
E ‘
ve 1 ij -1 . ve
g/m = C/m O-,/ - 7g/m (23)
E

Applying equation (21) into (23), one finds:

Im

g = ELWCZlo'U — y(ém —-& ) (24)

Using equations (22) and (24) into (13), the rheological differential representation for the Boltzmann

model results:

EE . vE .
o,=———C, (5 +yE, )_—‘7, (25)
" E+E_ E+E
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18 Procedimento alternativo para analise viscoelastica de placas pelo método dos elementos de contorno

where G is the total time stress rate.

3 BOUNDARY ELEMENT FORMULATION FOR VISCOELASTC PLATES IN BENDING

3.1 Kelvin-Voigt formulation

The Boundary Element formulation is achieved here from the Betti's reciprocal theorem,

cedV =|ocedV (26)
J‘ y oy .[ uy oy

where c; and 8” are the static fundamental values. Applying the elastic constitutive equation for G;“j
and the viscoelastic constitutive equation (11) for ;; one writes:

£

[Crepedv =[Cle e +yCré edV (27)

Using the Kirchhoff strain displacement relation for plate in bending,

& =—x3W,I (28)
é‘ = —xBW,I:_ (29)

in equation (27) results

[w, (Crxiw,)dV = [w, (Crxiw, YAV + [w (Clxiw, )dV (30)

W

Integrating equation (30) along the thickness of the plate one achieves:

Mw, dQ=\Mw, dQ+ |yM w, dQ (31)
J. i y .[ y y .[ i y

Applying the divergence theorem over equation (31) and taking into account the special concentrated
forces at corners of the Kirchhoff theory of plates, the following boundary integral equation for internal

collocations is achieved for the Kelvin-Voigt model:

)+ ita) + ][V (0. P)(P) 00 () 242 Jar (o)
A7 @ Pyi(r) 0022 ) i () S (o), (P)
ER (02 (P)= [ (P a0) - (1) ) ()

+;§;Rﬂ.(P)WZ,.(q,P)+Jg(p)W*(q,p)ng(p)

(32)
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where q is an internal collocation and P is a boundary Field point.

Taking into account that the singularities of the kernels related to viscous quantities are exactly
the same as the static ones the boundary integral equation for collocations Q placed over the boundary
is:

K(Q)w(Q)+yK(Q)w(Q)+I(K (Q,P)W(P)—M"(Q,P)a—(P)de(P)+
. n
A @r)a(r) -2 (0.1 2 8) ar(p) < (0.2 (1)
r n i=1
& ) . ow
SZR @) (1)~ [ V(P (0.P) 1. (P) 2 (0. Jr(p)+
i=1 r n
+2R (P)w,(0.P)+ [ g(p)w (Q.p)d2, (p)

(33)

where K(Q) is the usual free term for elastic plates. The curvature for internal points is given by
differentiating twice equation (32) regarding the collocation position. As the dependence of all kernels
regarding the collocation point position is exactly the same as the usual static formulation, the result is

achieved directly, i.e.:

e Sl
Wj(ax w( P Jdr(P)+
a ak Aa ] . (P)= .
=I[ (7Y (qur) aa; [%(q P>jjdr<P>+
+ZR(P

The total internal moment is achieved applying the viscoelastic constitutive relation written for plates

from equation (11) as:

= _[ s (C'w, +yC'Ww, Yxidx, =M ;M (35)

and by the application of the elastic tensor results,

M, =-D[vw,, & +(1-v)w, |+ yD[vw, S +(1-v)w, |=M; +M, (36)

In order to calculate the transverse internal force one has to differentiate equation (35) regarding the

collocation position, as follows
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o [ o'w(q) o [ o'w(q) 0 oV’
—[—q jw—(—q }f —( ﬂ <q,P>jw<P>+
Ox , 0x Ox Ox , 0x OX T\ Ox ) 0x Ox

o oM ow o oV
- *(¢,P) |—(P) |dT (P) + y[| —| —=(q.P) |w(P)+
axﬂ 0x OX (q ) 8n( ) ( ) y}[(éxﬂ(ﬁxm@xm((] )jw( )
o oM ow v 0 ( 'R
- ' (q,P) |—(P) |[dT(P)+> — (¢,P) |w (P)+
o) |20 far ) S ) e
X0 azR* P azw*
— ~(q,P) |w (P)=[|V (P)— P
+7§6xﬁ(ﬁxm@xm(q )jW( ) Vr[( ( )6xﬂ[8x”ﬁxm(q )j+
0 0 ow
-M (P P dI'(P)+
( )ax/, ((%cmc?xm( on (g )j]j (P)
o o'w o o'w
+> R(P)— . JP) |+ —_— , ie) 37
S ()2 200 | e L) Joo, 0 -
and use the following relation
q/ = _D(W’kk/ +]/w’kk/) (38)

Using boundary elements approximation for Kirchhoff plate in bending formulation, the integral equation

(33) is expressed in a matrix form as:

K(0)u(0)+yk(0)i(0Q)+H(Q)U + yH(Q)U + H (Q)w +

_ L = == (39)
+7H (0)w. =G(Q)P +G (Q)R +T (0)

where H(Q) and G(Q) are matrices that contain the contribution of internal fundamental efforts and
fundamental displacements, respectively. P_IC(Q) and (_?c contain the concentrated reactions and
corner displacements, respectively. T(Q) is the distributed force vector, U is the displacement vector

at the boundary, U is the velocity vector at the boundary, P is the force vector at the boundary. The
corner displacement, velocity and force are, respectively, w_, vT/c and F_lc.

General displacement and velocity vectors also contain the usual normal rotation as:

U= {Wl w’ w? ow® w' %N}
on on on

_ L1 .2 L N,

U=<W @ W2 @ VYA @ (41)
on on on
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In the same way the boundary force vector is given by:

P={Vi M, V: M. .. V" M| (42)

n n

Corner displacement, velocity and force are given as:

wo={w owloLow
W, ={W, W Wi |
R,={Ri RI .. RY} (43)

o={w w .. w"} (44)

All vectors dimensions are indicated by superscrits N, and N_ that are nodal and corner points,

respectively.

In this work linear functions are used to approximate the geometry while quadratic functions are used to

approximate variables. Special schemes are employed to distribute K(Q) over H(Q) . Therefore the

corner reaction R_ is settled null and the corner displacement W_ becomes a function of neighbor

nodes. These arrangements are also employed to viscous terms.

From the above considerations one achieves the following system of time differential equations for the

Kelvin-Voigt viscoelastic problem.
The displacement equations for internal points, following the same reasoning is given by:

u(q)+yi(q)+HU+yH'U=G'P+T" (46)

For curvature and internal efforts similar equations can be found.
Time integration should be done in order to solve equation (45). All the time derivatives are of the first

order with constant coefficients it is enough to adopt a simple linear approximation over a time step as:

w -Ww
W — (s+1) (s) (47)

At
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o ow
5_1"1’ _ on¢.y Ong)
on At

Or, following a general notation,

u u

(s+1) -

At

(s)

G:

Substituting equation (49) into equation (45) results:

HU(s+l) = GI)(S-HL) + T + Fl

where
Flz[1+le
At
F="Ha0
s At (s)

(48)

(49)

(50)

(51)

(52)

It is important to note that E is a known value of the past and the boundary conditions are imposed by

simply changing rows of matrices H and G and summing the independent vectors F and T. The

solution of equation (50) gives the current displacement and reactions.

From present and past displacements values one calculates velocity by equation (49).

In order to solve internal values, equations (46) that includes displacements, curvatures and curvature

derivatives one applies approximations (47) and

w,. +w
P i7(s+1) Yij(s)
T
. w’kk/i(.wl) +w’kk/i(.\-)
W’kkﬂ - At

What can be summarized as,

Uiy ~ U,

At

u =

(53)

(54)

(55)

The next step is important to solve the viscolastic problems by differential procedures, i.e., applying

equation (55) on equation (46) results:
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7, :(—E'U—yﬁ'ﬁ+é'ﬁ+f'+ium)/(u7) (56)
‘ t At

Substituting the boundary displacements and velocities into (56) the values of internal displacements,
curvatures and curvature derivatives are calculated. As a consequence all velocities are calculated for
intenal points applying equations (47), (53) e (54). It is important to note that expressions (1) to (4) can

be rewritten for plate analysis as follows:

W, == w, (57)
M, =M +M (58)
M =-D[vw, & +(1-v)w, ] (59)
M =-yD[viv, 5 +(1-v)w, ] (60)
q,==D(w,, +W,,) (61)

These equations complete the procedure for the Kelvin model as all internal efforts are achieved.

3.1.1 Clamped supported square plate
The analysis consists of a square plate with two simple supported opposite sides and the other two
clamped. The material follows the Kelvin-Voigt viscoelastic model. This plate has been discretized by

24 Dboundary elements. (Figure 3). The Physical parameters used for this analysis are:

E=25x10"kN/m* y=03 y=7.14285days q=10kN/m° a—=3m t=0,06m _ , At=01day

Twenty four boundary elements with 1000 time steps are adopted to run this example.

UL

X ™

X —

Figure 3 — Geometry, and discretization.
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The results for curvature w,11 and w,22 along time for point A are depicted in figure 4. Figure 5 shows
results for M22.

100005
00010 |
000154
1000204

-0.0025 +

(%]
g il
=}
% -0.0030 A
E 4
jum R -
3 0.0035 ] w,
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1 —— W,
-0.0045 | 2
-0.0050 +
-0.0055 +
T T T T T T T T T T T T T T T T T T T 1
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Time (days)
Figure 4 — Curvatures along time for point A.
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Figure 5 — Noments along time for point A.

One may observe that about 50 days the final values of displacements and internal forces are
practically achieved. In figure 5 one may observe the transfer from viscous stresses to elastic stress as
the time goes by. Moreover, the sum between the elastic and viscous part results exactly the total static
moment. It | important to observe that the total moment achieved by the viscoelastic solution is exactly

the same achieved by a pure elastic analysis.
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3.1.2 Corner clamped-free plate
Adopting the same geometry and physical parameters of the previous example, one considers a plate
clamped at two adjacent sides and free at the other two sides, see figure 6. This example is used to

show the solution behavior for different time steps.

10kN/m?
al6 &
- L 2
al6 X x,
L .1 ~
al6 §
. S
al6 -
3 -2 -
al6
al6

al6 a/6 al6 al/6 a/6 al6

Figure 6 — Geometry and applied load.

Using the same discretization one can see in figures 6 and 7 the influence of time step on the solution

for displacement at point 1 and curvature Wos at point 2.

0.0250
0.0225
0.0200 o ) V
0.0175
§ o.0150-
= - —=— At=0.1 day
S 00125 e =05 day
[} 1 —
o 1 —v— At=2.0 day
A 0.0075 At=5.0 day
0.0050 4 M —<— At=10. day
0.0025 4/
0.0000

—— 1 ~ 1 ~ 1 1T 1T 1T "~ 1T 1
20 30 40 50 60 70 80 90 100

Time (days)

Figure 7 — Displacement at point 1 — time step dependence.
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0.0000

-0.0001

—=— At=0.1 day
—e— At=0.5 day

-0.0002 +

° At=1.0 day
5 0.00034 —v— At=2.0 day
g At=5.0 day
O -0.0004 —<— At=10. day
-0.0005
-0.0006 o

Time (days)
Figure 8 — Curvature at point 2.

As one can see the results present small dependence on time step length and are very stable.

3.2 Boltzmann model

In order to achieve the BEM Boltzmann viscoelastic formulation without internal cells and using a static

fundamental solution it is necessary to apply the constitutive relation (25) in the right part of Bettis
theorem, equation (26). It is also necessary to apply the elastic strain g; for the left terms of the same

equation, these actions result in:

*

J‘O'[jé‘i/_dV :I mqj (8['“ +78[m)—m0'[] SUdV (62)

or

[oedy =[—=— EE, o, dv +

v VE +E ! lm ! (63)

Substituting (28) and (29) into (63) and integrating along the thickness one finds:
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DD .
—J.M w, dQ = j C'w, w, dQ +
Q D + D (64)
—J C YW, Wy, “dQ+ j M W, dQ
oD + D, oD + D,
Writing the fundamental moments in terms of fundamental curvatures results:
DD .,
-[DC"w, w, dQ=-] C'w,, w, dQ+
o a D + D (65)
_J‘ Clyw,, w, dQ +_[ Mw, dQ
o D + D ’ oD + D C
Observing that:
DEC;mw,:m w,; = DEC;"’W,; w, = M]W,J = Ml/w,; (66)
DC'w, w, =DC"w, w, =M w, (67)
Equation (65) is rewritten as:
—_[Mw dQ = I M;W,ide-i-
Q D + D (68)
_.[7 Mw, dQ-i—j M w, dQ
o D+D 7 oD +D 7
Reorganizing equation (68), one finds:
. .. D +D . Co
~[Mw, dQ-y[Mw, dQ=-———=[M w, dQ-y[M w, dQ (69)
2 i i > i i D " if if : ij ij

Using the Kirchhoff plate theory on equation (69) results the displacement integral equation for internal

points g without domain integrals for the Boltzmann viscoelastic model, as:
)+ i)+ ][V (0. ) (P) 00 () 242 Jar ()

A7 (0Pyi) =310 ) () ar ()-SR P, (P)
+7§R*(q PYs, (P) =P I(V(P)w (¢.P)-M, (P)—(q P)jJF(P)+
A(V (P ()31 <P>—<q P r(r)+ 2225 () (0

bep T e(p)w (0.0)d, ()

(70)

+yZR (P)w,(g.P)+—

+yig(p)w (¢.0)dQ.(p)
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For a boundary point Q one achieves:

K(©)w@) K (0)i0)+ [ V:(0.P)u() 11 (0.) 2 (P) Jar (P)
A(n‘(g,P)w(P)—M;(Q P2 () Jar (P) <R (P, () +

2 Dufl v (ryi(@.)- (P)—(Q P ()
A[V (P)wit0.P) -3t (P)—(Q P ir(r)+ 225 () (0.0

+7ZR (P)w (0.P)+2 Ig(p)w (0.p)dQ, (p)+
+7Ig(p)w (0. p)ae, (p)

SR (0.P)i (P)= -

It is interesting to note that the differences between equations (37) and (70) and (38) and (71) are the
coefficient evolving De and Dve, and the presence of y multiplying some terms at the right side of
equations (70) and (71). In order to find efforts at internal points, firstly one makes the derivatives of

equation (70) to find curvatures, as:

Owla) a W(q) " o on
éxk@xl 8x Ox, I(a ox, (] P) (P) ox.0x ,(q’P) (P)de(P)+
L(P)+

7[( O (gp)i Gl de(P)

6xk6x, Ox Ox,
o3 2 gy ()= vef[mméxa
~M,(P) axaﬁx (aaln(q,P)DaT(P)ﬂ/

()2 [%q P>jjdr(P>+

on

= C—y
T
N
—

N
o
[S))
o<
—~~
<
~
N
+

k [ l

(72)

Q, (p )
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o (owg)), o (dwa)) o oW w
Gxﬂ(axax J”a (Gxéx j+J(6x (a ox j (P)+

: ;”64 [ s <qp>jw<P>+
_ai( ja—:(P) dr(P)+;gﬂ(axax JWC,.(P)+
2
15x

/

= (P)—[aa; ) dr<P)+yJ(V<P>—(;—W<q,P)j

-M (P)a—( o (al(q P)D dr (P W2 | (

0x,0x, \_ On
+7ZR (P)— ﬁ(q, ) 2 Ig(p)—ﬂ (;—W(q p)jaf’Q (p)+
+y I g'(p)gﬁ( aikw j (73)

From the above considerations and using standard boundary approximations one achieves the
following system of time differential equations for the Boltzmann vicoelastic representation as:

K(Q)u(Q)+;/K(Q)L2(Q)+I7(Q)(7+7FI(Q)(7+FIC(Q)WC+
— — D +D _— - = - D +D _— —
+yH (Q)w = ~G(Q)P +yG(Q)P + 5 =G (Q)R + (74)

_ = D+D _ -
/G (Q)R += =T (0)+77(0)

for which there are additional terms when compared to the Kelvin-Voigt model, i.e., P is the nodal time
rate of boundary reactions, given by:

P={V: M V2 ML M

R. is the time rate of corner reactions, i.e.:

R.={R" R .. RM
And T(Q) is the time rate of loading over region Qg,.

Introducing, as made before, K(Q) into H(Q), considering R, zero and W, a function of neighbour

points, results:
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—— = D+D _—— - D+D _ =+

HU +yHU =——GP + yGP + ——=T + )T (75)
D D

Following the same reasoning, the internal points displacements, curvatures and the derivatives of

curvatures, given by equations (70), (72) and (73), respectively, can be written as::

_ — N — -~ D+D — - _ = D+D _ ;
u(q)+yi(q)+HU+yH'U=——"G'P+yG'P+——=T"+yT" (76)
D D

ve ve

Time integration should be done in order to solve equation (75) along time. As the time derivatives are
of the first order with constant coefficients it is enough to adopt a simple linear approximation for all time

derivatives over a time step as:

w w

(s+1)  "(s)

oo (77)
At
v ow
ow _Oney  Ong (78)
on At
) V -V
y o= e 70 (79)
At
. M -M
Mn — n(s+1) n(s) (80)
At
_ g(s+1) - g(s) (81)
At

Using the vector representation of U,PandT one writes equations (77) through (81) in a unified

version, as:

~ U  -U

U — (s+1) (s) (82)
At

P _-P

P — (5+1) (s) (83)
At

— T -T

T — (s+1) (s) (84)
At

Substuting (82) through (84) into (75), results:

AU =GP  +T+F (85)
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where:

~ }/ —

H = (1+ —)H (86)

At

~ D +D Y =

G=| ———=+— |G (87)
D At

- D+D vy =

T — e ve + L ]zwl) (88)
D, At )

~ V == V == YV =

F=-—HU, -——GR, -——1T, (89)

At At At

To impose boundary conditions one changes columns of I:Ieé. As usual, the right side of the
resulting equation has only known values that can be put together and the system (85) can be solved
achieving the current displacement and reactions. From these values the time rates of all variables are
calculated by equations (82), (83) and (84).

To calculate current internal values, i.e., displacements, curvatures, and derivatives of curvatures,

equation (76) is adopted using time approximation (77) and the following:

w, AW,
w”, — i(s+1) ii((s) (90)
' At
w +w
- tp(si) T Wina(o)
W’kkﬁ — ki B 1 kk g (91)
At
That is,
_u, ., —u
L.l — (s+1) (s) (92)
At

Applying (92) into (76) results:

_ — _ = D+D _— _ —
i “HU-yH'U+——=G'P+yG'P+
D

D+D, =, = ¥ _ /4
+— T+ yT'+ " u, 1+—
D At At

ve

(93)

From the result of equation (93) one calculates the time rates for internal displacements, curvatures and
derivatives of curvatures using equations (77), (90) and (91). To calculate total moments one should

use what follows:
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M — Mif(ﬁl) B Mz:f(s)
! At (94)

Rewriting equation (25) for plates, results:

M, =P, i, ) -

- D +D, D +D, (95)

Substituting (94) into (95), one finds:

DD , Dy Dy
M, =| —C (w,, +yw,, )+—— M, 14— (96)
D +D D +D At D +D Al

In order to calculate the viscous and elastic parts of the total moment it is necessary to apply a relation
developed by MESQUITA & CODA (2001) that consists for plate analysis in what follows.

Deriving equation (15) regarding time one writes:

“rel I ve 1 Im _« ve 1 v
M / =D C'w, =—yD C'Ww, =—M ; (97)

v Y
or
M =yM’ (98)

i i

Rewriting equation (20) for plates results:

M =M'+M (99)
Applying (98) into (99), results the following differential equation:

yM? +M" =M =0 (100)
This differential equation is solved adopting the following approximation:

Me/ Ma/

M;[ — ij(s+1) ij(s) (101)
: At

Substituting (101) into (100), it follows:

M= (M,,(M) M j / (1 ; 7) (102)
/ Y At
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From this equation one finds the elastic moment from the total moment and using equation (99) one
recovers the viscous moment.
To find the total shear force one substitutes

M, —q =0 (103)

gl

Into equation (95) resulting

DeDve . 7/Dve hd
q/i = _—(W’kk/f +7W’kk/f ) - —q/i (104)
D +D, D +D,
Using the following approximation
_ Dy "9
’ At (105)
into equation (104), results
DD. : D,y D, 7
qﬂ(,wl) . (W’kkﬂ +7/W’kkﬂ ) + L qﬂ(v) 1+ .
D +D. D +D, At D +D, At (106)

One is able to calculate the elastic and viscous parts of shear force using the same reasoning applied

for moments, i.e.:

el 7/ el 7/
Qﬂ(s+l) = (qﬂ(s+l) + T qﬂ(s) )/(1 + )
" o (107)

Completing the procedure

3.2.1 Numerical example for Boltzmann model
This example is similar to the one presented in item 2. Dimensions, discretization and applied load are

the same depicted in figure 3. The physical parameters are the same except the existence of an

instantaneous elastic modulus of E, =1.25x10'kN/m? and other to the viscoelastic part given by

E,=2,5x10"kNIm’.

The results for curvatures w,11 and w,22 along time for point A are presented in figure 9 and for

moments M22 are presented in figure 10.
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Figure 9 — Curvatures for point A.
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Figure 10 — Moments M22 for point A.

Figure 9 shows the instantaneous and viscous structural behavior due to the Boltzmann model. Figure
10 shows the transfer of efforts from the viscous and elastic parts of the viscoelastic fragment of the
Boltzmann model. The moment along the elastic (instantaneous) fragment of the model is equal to the

total moment. After 50 days the results are practically constant along time.
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3.2.2 General plate
This example uses the proposed viscoelastic formulations for a more elaborated problem. It is a plate in

bending with two sides partially supported, one side totally supported and the last one free. A uniformly

distributed load is applied as depicted in figure 11.

F@F\
N L
N— 3(1
b \'Xz
)’ y2 ¥
al/4 3a/4

Figure 11 — Geometry and loading.

The adopted material properties for the Kelvin-Voigt model are E=2.5x10"kN/m’, v=0.3 and
y=7.14285days. For the Boltzmann model the physical properties are: E =1.5x10"kN/m’,

E =2.5x10"kN/m’ ,v=0.3 and y=7.14285days. The load is instantly applied and its value is

q=10kN/m2_ The adopted geometric parameters are: a=2m, b=Im and t=0.06m . The adopted time
step is At=0.1days for a total of 100 days . As the good behavior of the formulations regarding time has
been presented in the previous examples, to save space, only the final result is shown, i.e., at day 700 .
Two discretizations have been adopted, the one called A has 24 elements and 54 nodes while
discretization B has 192 elements and 390 nodes. Displacements for Kelvin-Voigt model (figure 12) and
reactions for Boltzmann model (figure 13) at the partially supported side of the plate are analyzed for

both discretizations.
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Figure 12 — Displacement for Kelvin model (100 days).
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Figure 13 — Reaction for longitudinal faces full range.

4 CONCLUSIONS

The presented formulations are important contributions for the BEM research as the authors did not find
any analytical or numerical solution to compare results including the viscous behaviors of plates by the
BEM. The adaptation of the differential constitutive model proposed by Mesquita et al. (2004) for plate
analysis by the BEM has been successfully carried out. The resulting computational code is accurate
and present a small computational effort when compared with other ways to solve this kind of problems,

e.g., Laplace transforms or convolution solutions.
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The presented formulations, Kelvin-Voigt and Boltzmann are efficient and elegant, as no discretizations
over the domain where required. One interesting feature is the total flexibility to apply variable loads
along time for both models. The authors indicate further investigations and improvements in order to

identify the origin of the vertical reaction oscillations present in partially supported sides.
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