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ALTERNATIVE PROCEDURE FOR VISCOELASTIC ANALYSIS OF PLATES 
BY THE BOUNDARY ELEMENT METHOD 

Rodrigo Couto da Costa1, Humberto Breves Coda2 & Wilson Sérgio Venturini3 

A b s t r a c t  

This study presents an alternative Boundary Element formulation for the analysis of viscoelastic plate in bending 
without using convolution processes with internal cells, Laplace transforms or special fundamental solutions. Two 
different constitutive models are considered. The first and simplest one is the Kelvin-Voigt model that does not 
take into account instantaneous response. The second, Boltzmann model, considers instantaneous and time 
dependent behavior of materials. An appropriate kinematical relation is combined with differential viscoelastic 
constitutive representations in order to generate the time marching scheme. Spatial approximations are used for 
boundary elements before any time solution. The proposed technique results in a time marching process that does 
not use relaxation functions to recover viscous behavior. Some examples are shown in order to demonstrate the 
accuracy and stability of the technique. 
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1  INTRODUCTION 

 Various engineering structures are constituted by plates in bending and the good 
representation of these elements for general material or subjected to any load condition is necessary. 
One of these situations is related to the material viscoelastic behavior as for example, polymers, 
concrete, wood and others.  

 Usual numerical viscoelastic analysis are based on relaxation functions [1-4] together with a 
convenient incremental scheme where the convolutional aspect of the viscous behavior is transformed 
into discrete contributions to the elastic response. These incremental techniques calculate viscous 
residuals by local (point by point) stress decay considerations, like viscoplastic processes [5-7], usually 
requiring cells or other related process to do the domain integrals.  

 Other possibilities are also present in literature, as doing Laplace transforms or using 
fundamental solutions for viscoelasticity. The last strategy depends upon the existence of fundamental 
solutions for each class of problem to be solved. 

 An alternative procedure to solved viscoelastic problems has been proposed and successfully 
tested for two and three dimensional solids by [8-12]. This strategy is based on static fundamental 
solutions and differential viscoelastic constitutive relations that provide accurate results without using 
domain integrals and with small computational effort. 

 Encouraged by the absence of cells and the small amount of computations the authors 
extended here the previous procedure to treat viscoelastic plate in bending problems by the boundary 
element method. The adopted kinematics is the Kirchhoff one and the constitutive relations are the 
Kelvin-Voigt and the Boltzmann ones. 

 An important characteristic of the proposed technique is that the experimental results for creep 
and relaxation functions can be used to achieve the necessary viscous parameters used in the 
differential constitutive relations. 
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 At the end of the paper, selected examples are shown in order to demonstrate the accuracy 
and stability of the formulation. Along all text Einstein notation is adopted. 

 

2  RHEOLOGICAL MODELS 

2.1  Differential representation of the Kelvin-Voigt 

The Kelvin-Voigt viscoelastic model can be represented by the simple parallel arrangement of a spring 

and a dashpot, as depicted in figure 1. 

 

 

Figure 1 – Kelvin-Voigt model.  

 

The two parts of this model develop the same strain, i.e: 

e v

ij ij ij
                                                                                                                   (1) 

where 
ij
 is the total strain,

e

ij
  is the elastic strain 

v

ij
  is the viscous strain tensor.. 

However the total stress developed in the arrangement is the summation of the viscous and elastic 

parts, as 

e v

ij ij ij
                                                                                                                 (2) 

where 
ij

  is the total stress, 
e

ij
  is the elastic stress and 

v

ij
  is the viscous stress. 

The elastic and viscous stress are related to strain as follows: 

e lm e lm

ij ij lm ij lm
C C                                                                                                   (3) 

v lm v lm

ij ij lm ij lm
                                                                                                       (4) 
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where 
lm

ij
C is the elastic strain, 

lm
  is the time strain rate and 

lm

ij
  is the viscous constitutive tensor. 

The fourth order tensors 
lm

ij
C and 

lm

ij
 are given by: 

 lm

ij ij lm il jm im jl
C                                                                                     (5) 

 lm

ij ij lm il jm im jl 
                                                                                 (6) 

where  e  are the elastic constants given by: 

  1 1 2

E


 


 
                                                                                                       (7) 
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                                                                                                          (8) 

 

 and  are material viscous coefficients. 

The viscosity tensor 
lm

ij
  can be simplified adopting a unique viscous parameter  as: 

( ) / 2 
 

                                                                                                           (9) 

  lm lm

ij ij lm il jm im jl ij
C                                                                     (10) 

Introducing equations (3) and (10) into equation (2), one finds: 

lm lm

ij ij lm ij lm
C C                                                                                                (11) 

 

2.2  Differential representation of the Boltzmann model 

The Boltzmann model is represented by a serial arrangement between an elastic part and the Kelvin-

Voigt model, as described by figure 2.  
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Figure 2 – Boltzmann Model. 

 

The elastic part of the model is responsible by the instantaneous response of the material. The stress at 

all parts of the model is the same, therefore: 

e ve

ij ij ij
                                                                                                          (12) 

where 
ij

 is the total stress tensor, 
e

ij
  is the elastic stress and 

ve

ij
  is the viscoelastic one. 

For this model the total strain 
ij
  is the summation of elastic (instantaneous) strain 

e

ij
  and the 

viscoelastic strain 
ve

ij
 , i.e.: 

e ve

lm lm lm
                                                                                                          (13) 

By simplicity, one considers the same poison ratio for both parts of the model and, as for the Kelvin-

Voigt model, only one viscous parameter. From these assumptions one writes: 

 

e lm e lm e

ij ij lm e ij lm
C E C                                                                                            (14)  

ˆel lm ve lm ve

ij ij lm ve ij lm
C E C                                                                                           (15) 

v lm ve lm ve

ij ij lm ve ij lm
E C                                                                                             (16) 

where 
el

ij
  is the stress acting at the spring parallel to the dashpot at the viscous part of the Boltzmann 

model, 
v

ij
  is the viscous stress at the dashpot, 

e
E  is the elastic modulus at the instantaneous part of 

the arrangement, 
ve

E  is the elastic modulus at the viscous part of the model, 
lm

ij
C  and 

lm

ij
Ĉ  are elastic 

tensors written regarding 
e

E and
ve

E . 
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The auxiliary tensor 
lm

ij
C is written without unity, resulting: 

 lm

ij ij lm ij jm im jl
C                                                                                   (17) 

where   and   are nondimensional versions of  Lamé constants, i.e.: 

  1 1 2




 


 
                                                                                                       (18) 
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                                                                                                           (19) 

 

For the viscoelastic part one writes: 

ve el v lm ve lm ve

ij ij ij ij ve ij lm ve ij lm
E C E C                                                                    (20) 

Differentiating equation (13) regarding time results the following relation:  

e ve

lm lm lm
                                                                                                            (21) 

where 
lm
 is the total time strain rate, 

e

lm
  is the elastic time strain rate and 

ve

lm
  is the viscoelastic time 

strain rate. 

One isolates the elastic and viscoelastic strains from equations (14) and (20) resulting: 

11e ij

lm lm ij

e

C
E

                                                                                                     (22) 

11ve ij ve

lm lm ij lm

ve

C
E

                                                                                              (23) 

Applying equation (21) into (23), one finds: 

 11ve ij e

lm lm ij lm lm

ve

C
E

                                                                                    (24) 

Using equations (22) and (24) into (13), the rheological differential representation for the Boltzmann 

model results: 

 lme ve ve

ij ij lm lm ij

e ve e ve

E E E
C

E E E E


     

 
                                                           (25)  
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where 
ij

 is the total time stress rate. 

 

3  BOUNDARY ELEMENT FORMULATION FOR VISCOELASTC PLATES IN BENDING 

3.1  Kelvin-Voigt formulation 

The Boundary Element formulation is achieved here from the Betti’s reciprocal theorem,  

* *

ij ij ij ij

V V

dV dV                                                                                                (26) 

where ij
  and ij

  are the static fundamental values. Applying the elastic constitutive equation for ij
   

and the viscoelastic constitutive equation (11) for ij  one writes:  

* *lm lm lm

ij ij ij lm ij ij lm ij

V V

lmC dV C C dV                   (27) 

Using the Kirchhoff strain displacement relation for plate in bending, 

3
,

ij ij
x w                                                                                                            (28) 

3
,

ij ij
x w                                                                                                             (29) 

in equation (27) results 

2 2 2

, 3 , , 3 , , 3 ,
( ) ( ) ( )lm lm lm

lm ij ij ij ij lm ij ij lm
V V V

w C x w dV w C x w dV w C x w dV            (30) 

Integrating equation (30) along the thickness of the plate one achieves: 

* * *, , ,
ij ij ij ij ij ij

M w d M w d M w d
  

                                                            (31) 

Applying the divergence theorem over equation (31) and taking into account the special concentrated 

forces at corners of the Kirchhoff theory of plates, the following boundary integral equation for internal 

collocations is achieved for the Kelvin-Voigt model: 
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where q is an internal collocation and P is a boundary Field point. 

Taking into account that the singularities of the kernels related to viscous quantities are exactly 

the same as the static ones the boundary integral equation for collocations Q placed over the boundary 

is: 
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where K(Q) is the usual free term for elastic plates. The curvature for internal points is given by 

differentiating twice equation (32) regarding the collocation position. As the dependence of all kernels 

regarding the collocation point position is exactly the same as the usual static formulation, the result is 

achieved directly, i.e.: 
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The total internal moment is achieved applying the viscoelastic constitutive relation written for plates 

from equation (11) as: 

, ,

/ 2 2

3 3/ 2
( )lm lm

ij ij lm ij lm

h e v

ij ijh
M C Cw w x dx M M


                                                        (35) 

and by the application of the elastic tensor results, 

     , 1 , , 1 ,
ij kk ij ij kk ij ij

e v

ij ijM D w w w wD M M                 (36) 

In order to calculate the transverse internal force one has to differentiate equation (35) regarding the 

collocation position, as follows 
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and use the following relation 

( , , )
j kkj kkj

q D w w                                                                                                  (38) 

Using boundary elements approximation for Kirchhoff plate in bending formulation, the integral equation 

(33) is expressed in a matrix form as: 

             
       

c c

c c c c

K Q u Q K Q u Q H Q U H Q U H Q w

H Q w G Q P G Q R T Q

 



    

   




                 (39) 

where ( )H Q  and ( )G Q  are matrices that contain the contribution of internal fundamental efforts and 

fundamental displacements, respectively. ( )cH Q  and cG  contain the concentrated reactions and 

corner displacements, respectively. ( )T Q  is the distributed force vector, U  is the displacement vector 

at the boundary, U is the velocity vector at the boundary, P  is the force vector at the boundary. The 

corner displacement, velocity and force are, respectively, cw , cw  and cR .  

General displacement and velocity vectors also contain the usual normal rotation as:  

n

n

1 2 N

N1 2w w w
U w w w

n n n
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N1 2w w w
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In the same way the boundary force vector is given by: 

 n nN N1 1 2 2

n n n n n nP V M V M V M          (42) 

Corner displacement, velocity and force are given as: 

 cN1 2

c c c cw w w w   

 cN1 2

c c c cw w w w     

 cN1 2

c c c cR R R R            (43) 

Finally vectors u(Q)  and u(Q)  contain the transverse displacement at boundary colocations, i.e.: 

 nN1 2u w w w   

 nN1 2u w w w              (44) 

All vectors dimensions are indicated by superscrits nN  and cN  that are nodal and corner points, 

respectively. 

In this work linear functions are used to approximate the geometry while quadratic functions are used to 

approximate variables. Special schemes are employed to distribute  K Q  over  H Q . Therefore the 

corner reaction 
c

R  is settled null and the corner displacement 
c

w  becomes a function of neighbor 

nodes.  These arrangements are also employed to viscous terms.  

 

From the above considerations one achieves the following system of time differential equations for the 

Kelvin-Voigt viscoelastic problem. 

HU HU GP T  
                                                                                       (45) 

The displacement equations for internal points, following the same reasoning is given by: 

    ' ' ' 'u q u q H U H U G P T                                                            (46) 

For curvature and internal efforts similar equations can be found. 

Time integration should be done in order to solve equation (45). All the time derivatives are of the first 

order with constant coefficients it is enough to adopt a simple linear approximation over a time step as: 

   1s s
w w

w
t







                                                                                            (47) 
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   1s s
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w n n
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                                                                                       (48) 

Or, following a general notation, 

(s 1) (s)U U
U

t
 




                                                                                                 (49) 

Substituting equation (49) into equation (45) results: 

  ( 1)1 s ss
HU GP T F                                                                                            (50) 

where: 

1H H
t

    
                                                                                                           (51) 

 s s
F HU

t





                                                                                                                (52) 

It is important to note that sF  is a known value of the past and the boundary conditions are imposed by 

simply changing rows of matrices H  and G  and summing the independent vectors F  and T . The 

solution of equation (50) gives the current displacement and reactions. 

From present and past displacements values one calculates velocity by equation (49). 

In order to solve internal values, equations (46) that includes displacements, curvatures and curvature 

derivatives one applies approximations (47) and  
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What can be summarized as, 

   1s s
u u

u
t







                                                                                                     (55) 

The next step is important to solve the viscolastic problems by differential procedures, i.e., applying 

equation (55) on equation (46) results: 
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   1
' ' ' ' 1

s s
u H U H U G P T u
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                                 (56) 

Substituting the boundary displacements and velocities into (56) the values of internal displacements, 

curvatures and curvature derivatives are calculated. As a consequence all velocities are calculated for 

intenal points applying equations (47), (53) e (54). It is important to note that expressions (1) to (4) can 

be rewritten for plate analysis as follows: 

 

, , ,e v

ij ij ij
w w w                                                                                                      (57) 

e v

ij ij ij
M M M                                                                                                     (58) 

  , 1 ,e

ij kk ij ij
M D w w                                                                              (59) 

  , 1 ,v

ij kk ij ij
M D w w                                                                              (60) 

 , ,
kk kk

q D w w
  
                                                                                          (61) 

These equations complete the procedure for the Kelvin model as all internal efforts are achieved.  

 

3.1.1  Clamped supported square plate 

The analysis consists of a square plate with two simple supported opposite sides and the other two 

clamped. The material follows the Kelvin-Voigt viscoelastic model. This plate has been discretized by 

24 boundary elements. (Figure 3). The Physical parameters used for this analysis are: 
7 2E 2.5 x10 kN / m , 0.3  , 7.14285days  , 

2q 10kN / m , a 3m , t 0,06m  and t 0,1day  .  

Twenty four boundary elements with 1000 time steps are adopted to run this example. 

 

 

q 

q

 

Figure 3 – Geometry, and discretization. 
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The results for curvature w,11 and w,22 along time for point A are depicted in figure 4. Figure 5 shows 

results for M22.  
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Figure 4 – Curvatures along time for point A. 
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Figure 5 – Noments along time for point A. 

 

One may observe that about 50 days the final values of displacements and internal forces are 

practically achieved. In figure 5 one may observe the transfer from viscous stresses to elastic stress as 

the time goes by. Moreover, the sum between the elastic and viscous part results exactly the total static 

moment. It I important to observe that the total moment achieved by the viscoelastic solution is exactly 

the same achieved by a pure elastic analysis. 
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3.1.2  Corner clamped-free plate 

Adopting the same geometry and physical parameters of the previous example, one considers a plate 

clamped at two adjacent sides and free at the other two sides, see figure 6. This example is used to 

show the solution behavior for different time steps. 
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Figure 6 – Geometry and applied load. 

 

Using the same discretization one can see in figures 6 and 7 the influence of time step on the solution 

for displacement at point 1 and curvature xxw,  at point 2. 
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Figure 7 – Displacement at point 1 – time step dependence. 
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Figure 8 – Curvature at point 2. 

 

As one can see the results present small dependence on time step length and are very stable. 

 

3.2  Boltzmann model 

In order to achieve the BEM Boltzmann viscoelastic formulation without internal cells and using a static 

fundamental solution it is necessary to apply the constitutive relation (25) in the right part of Bettis 

theorem, equation (26). It is also necessary to apply the elastic strain 
e

ij
  for the left terms of the same 

equation, these actions result in: 
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Substituting (28) and (29) into (63) and integrating along the thickness one finds: 
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Writing the fundamental moments in terms of fundamental curvatures results: 
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Observing that: 
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Equation (65) is rewritten as: 
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Reorganizing equation (68), one finds: 
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Using the Kirchhoff plate theory on equation (69) results the displacement integral equation for internal 

points q without domain integrals for the Boltzmann viscoelastic model, as: 
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For a boundary point Q one achieves: 
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It is interesting to note that the differences between equations (37) and (70) and (38) and (71) are the 

coefficient evolving De and Dve, and the presence of  multiplying some terms at the right side of 

equations (70) and (71). In order to find efforts at internal points, firstly one makes the derivatives of 

equation (70) to find curvatures, as: 
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   (73) 

From the above considerations and using standard boundary approximations one achieves the 

following system of time differential equations for the Boltzmann vicoelastic representation as: 
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                (74) 

for which  there are additional terms when compared to the Kelvin-Voigt model, i.e., P  is the nodal time 

rate of boundary reactions, given by: 

 n nN N1 1 2 2

n n n n n nP V M V M V M        

cR  is the time rate of corner reactions, i.e.: 

 cN1 2

c c c cR R R R     

And  T Q  is the time rate of loading over region g,. 

Introducing, as made before,  K Q  into  H Q , considering 
c

R  zero and 
c

w  a function of neighbour 

points, results: 
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e ve e ve
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                                             (75) 

Following the same reasoning, the internal points displacements, curvatures and the derivatives of 

curvatures, given by equations (70), (72) and (73), respectively, can be written as:: 

    ' ' ' ' ' 'e ve e ve

ve ve

D D D D
u q u q H U H U G P G P T T

D D
   

 
                  (76) 

Time integration should be done in order to solve equation (75) along time. As the time derivatives are 

of the first order with constant coefficients it is enough to adopt a simple linear approximation for all time 

derivatives over a time step as: 
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                                                                                                    (81) 

Using the vector representation of U , P andT  one writes equations (77) through (81) in a unified 

version, as: 

   1s s
U U

U
t







                                                                                                  (82) 
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                                                                                                     (84) 

Substuting (82) through (84) into (75), results: 

   1 1s s s
HU GP T F

 
                                                                                          (85) 
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where: 

1H H
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                                                                                   (89) 

To impose boundary conditions one changes columns of H eG . As usual, the right side of the 

resulting equation has only known values that can be put together and the system (85) can be solved 

achieving the current displacement and reactions. From these values the time rates of all variables are 

calculated by equations (82), (83) and (84). 

To calculate current internal values, i.e., displacements, curvatures, and derivatives of curvatures, 

equation (76) is adopted using time approximation (77) and the following: 
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That is, 
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Applying (92) into (76) results: 
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                                       (93) 

From the result of equation (93) one calculates the time rates for internal displacements, curvatures and 

derivatives of curvatures using equations (77), (90) and (91). To calculate total moments one should 

use what follows: 
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                                                                                           (94) 

Rewriting equation (25) for plates, results: 
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                                                   (95) 

Substituting (94) into (95), one finds: 
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      (96) 

In order to calculate the viscous and elastic parts of the total moment it is necessary to apply a relation 

developed by MESQUITA & CODA (2001) that consists for plate analysis in what follows. 

 

Deriving equation (15) regarding time one writes:  

1 1
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                                                                  (97) 

or 

v el

ij ij
M M                                                                                                         (98) 

Rewriting equation (20) for plates results: 
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Applying (98) into (99), results the following differential equation: 

0el el
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M M M                                                                                           (100) 

This differential equation is solved adopting the following approximation: 
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Substituting (101) into (100), it follows: 
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From this equation one finds the elastic moment from the total moment and using equation (99) one 

recovers the viscous moment. 

 

To find the total shear force one substitutes  

, 0
ij i j

M q                                                                                                       (103) 

Into equation (95) resulting 
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Using the following approximation 
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into equation (104), results 
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One is able to calculate the elastic and viscous parts of shear force using the same reasoning applied 

for moments, i.e.: 
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q q

  

 
 
  

 
   
   
            (107) 

Completing the procedure 

 

3.2.1  Numerical example for Boltzmann model 

This example is similar to the one presented in item 2. Dimensions, discretization and applied load are 

the same depicted in figure 3. The physical parameters are the same except the existence of an 

instantaneous elastic modulus of 7 2

elE 1.25x10 kN / m  and other to the viscoelastic part given by 

7 22,5 10 /veE x kN m . 

The results for curvatures w,11 and w,22 along time for point A are presented in figure 9 and for 

moments M22  are presented in figure 10. 
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Figure 9 – Curvatures for point A. 
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Figure 10 – Moments M22 for point A. 

 

 

Figure 9 shows the instantaneous and viscous structural behavior due to the Boltzmann model. Figure 

10 shows the transfer of efforts from the viscous and elastic parts of the viscoelastic fragment of the 

Boltzmann model. The moment along the elastic (instantaneous) fragment of the model is equal to the 

total moment. After 50 days the results are practically constant along time. 

 



Rodrigo Couto da Costa, Humberto Breves Coda & Wilson Sérgio Venturini 

Cadernos de Engenharia de Estruturas, São Carlos, v. 12, n. 57, p. 13-38, 2010 

35

3.2.2  General plate 

This example uses the proposed viscoelastic formulations for a more elaborated problem. It is a plate in 

bending with two sides partially supported, one side totally supported and the last one free. A uniformly 

distributed load is applied as depicted in figure 11.  

 

 

Figure 11 – Geometry and loading. 

 

The adopted material properties for the Kelvin-Voigt model are 7 2E=2.5 x10 kN/m , ν=0.3  and 

γ=7.14285 days . For the Boltzmann model the physical properties are: 7 2

eE =1.5 x10 kN/m , 

7 2

veE =2.5 x10 kN/m , ν=0.3  and γ=7.14285 days . The load is instantly applied and its value is 

2q=10kN/m . The adopted geometric parameters are: a=2m , b=1m  and t=0.06m . The adopted time 

step is t=0.1days  for a total of 100 days . As the good behavior of the formulations regarding time has 

been presented in the previous examples, to save space, only the final result is shown, i.e., at day 100 . 

Two discretizations have been adopted, the one called A has 24 elements and 54 nodes while 

discretization B has 192 elements and 390 nodes. Displacements for Kelvin-Voigt model (figure 12) and 

reactions for Boltzmann model (figure 13) at the partially supported side of the plate are analyzed for 

both discretizations.  
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Figure 12 – Displacement for Kelvin model (100 days). 
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Figure 13 – Reaction for longitudinal faces full range. 

 

4  CONCLUSIONS 

The presented formulations are important contributions for the BEM research as the authors did not find 

any analytical or numerical solution to compare results including the viscous behaviors of plates by the 

BEM. The adaptation of the differential constitutive model proposed by Mesquita et al. (2004) for plate 

analysis by the BEM has been successfully carried out. The resulting computational code is accurate 

and present a small computational effort when compared with other ways to solve this kind of problems, 

e.g., Laplace transforms or convolution solutions. 
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The presented formulations, Kelvin-Voigt and Boltzmann are efficient and elegant, as no discretizations 

over the domain where required. One interesting feature is the total flexibility to apply variable loads 

along time for both models. The authors indicate further investigations and improvements in order to 

identify the origin of the vertical reaction oscillations present in partially supported sides.  
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