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BY THE BOUNDARY ELEMENT METHOD 
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A b s t r a c t  

This paper presents a time-domain boundary element formulation for the dynamic analysis of saturated porous 
media. Integral equations for displacements, stresses and pore-pressures, based on non-transient fundamental 
solutions are considered. Elastoplastic models are also dealt with by the present methodology, extending the 
applicability of boundary elements to model complex pore-dynamic problems. At the end of the paper, a 
discussion concerning two numerical examples is presented, illustrating the potentialities of the new procedure.  
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1 INTRODUCTION  

For many everyday engineering  problems, such as earthquake engineering, soil-structure 
interaction, biomechanics, seismic wave scattering etc., dynamic porous media analysis is necessary 
and over simplified theoretical models (e.g., pure elastic theory etc.) may only represent a very crude 
approximation. The pioneering work of Biot (1941, 1956a, 1956b, 1962) is commonly referred to as the 
beginning of an era of study of porodynamic problems. For a quite complete overview of the porous 
media theory evolution (which is marked with very peculiar and interesting aspects) the work of de 
Boer (1998) is recommended.       

 In the early years of development, classical mathematics was the only effective tool available to 
solve the set of governing differential equations describing porous models; thereby, the complexity of 
the analyses was quite limited. In the last decades, with the drastic evolution of digital computers, 
numerical methods (mainly FDM, FEM and BEM) have assumed an important role in the solution of 
practical and complex engineering problems. However, for the dynamic analysis of porous media, the 
Boundary Element Method (BEM) application is still limited to “simple” case analyses (linear models 
etc.). Moreover, the current time-domain based boundary element formulations are highly CPU-time 
demanding. In fact, most of the BEM limitations concerning time-domain pore-dynamic analyses are 
due to the lack of an appropriate time-dependent fundamental solution. Unfortunately, this still remains 
an open task. 

 One of the earliest books on porous media, taking into account boundary elements, was presented 
by Liggett and Liu (1983). Concerning poroelastodynamic analyses, Predeleanu (1984) and Manolis 
and Beskos (1989) are among the first to introduce boundary element formulation procedures. The 
fundamental solution employed was based on transformed domains, namely the Laplace domain 
(Manolis and Beskos, 1989) and the frequency domain (Norris, 1985). However, these formulations 
were based on solid and fluid displacements (six unknowns) and it can be shown (Bonnet, 1987; 
Boutin et al., 1987) that only solid displacements and fluid pressures are independent (four unknowns). 
Boundary element formulations based on these four independent variables (in fact, three independent 
variables since only plane strain problems were focused) were presented by Cheng et al. (1991) and 
Domínguez (1992), in a frequency domain context. 
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 Due to the lack of time-dependent Green’s functions, time-domain boundary element formulations 
for porous media have been developed mostly based on transformed-domain fundamental solutions. 
Works in this context have been presented by Chen and Dargush (1995), which uses analytical inverse 
transformation of Laplace domain fundamental solutions (Chen, 1994a, 1994b), and Schanz (2001a, 
2001b), which employs the convolution quadrature method, proposed by Lubich (1988a, 1988b). A 
formulation based on a time-domain fundamental solution was developed by Wiebe and Antes (1991), 
neglecting the viscous coupling of Biot’s dynamic poroelasticity (vanishing damping between the solid 
skeleton and the fluid).  

Considering nonlinear porous media modelled by the BEM, consolidation analyses were presented 
by Benallal et al. (2008) (see also Cavalcanti and Telles, 2003, Venturini et al., 2005a-c, etc. for other 
references considering consolidation analyses by the BEM), whereas the dynamic analysis was 
introduced by Soares Jr. et al. (2006).  

 Time-domain boundary element formulations based on transformed-domain fundamental solutions 
are CPU-time demanding and quite elaborated mathematically. Thus, the present paper presents a 
time-domain BEM analysis based on non-transient fundamental solutions (2D form of the Kelvin 
solution). The equations that arise are mathematically simpler to deal with, making it possible to 
consider more complex physical phenomena without that much effort (e.g., elastoplasticity). Moreover, 
time-marching schemes related to this kind of analysis (see the Houbolt method, for instance; Houbolt, 
1950) present low computational costs. The drawback of the methodology is that it keeps domain 
integrals in the formulation (inertial terms, coupling terms etc.). The necessity of domain discretization, 
however, does not turn the formulation unattractive. As pointed out by Telles (1983) and Venturini 
(1984), when performing elastoplastic analyses, the part of the domain where inelastic behaviour is 
expected to occur necessarily requires domain discretization. Thus, as future developments, the 
present methodology (modelling, for instance, non-linear complex sub-domains) may be coupled with 
other time-domain boundary element formulations (e.g., Mansur, 1883, Coda and Venturini, 1995, 
etc.). Thereby, in an infinite domain context, the interface between the different methodologies could be 
interpreted as an efficient non-reflecting boundary. For details on this coupling of different BE 
formulations concerning dynamic analyses, the work of Soares Jr et al. (2005) is recommended. 

In the present paper, firstly (section 2) the governing equations of the problem are presented and 
briefly discussed. A complete set of equations is initially considered and, later on, simplifications on the 
general formulation are adopted, pointing out the main expressions to be worked out here (u-p 
formulation). In section 3, boundary element procedures for the dynamic analysis of non-linear porous 
media are developed. Finally, at the end of the paper (section 4), two numerical applications are 
discussed, illustrating the potentialities of the new methodology. In appendix A, the employed non-
transient fundamental solutions are presented. 

 

2 GOVERNING EQUATIONS 

For a unit volume and from the definition of the total stress, the total momentum equilibrium 
equation for the solid-fluid ensemble can be written as (Zienkiewicz et al., 1990) 

 

 jijifimimjij wwwbu ,,      (1) 

 

where ij
 is the total Cauchy stress, using the usual indicial notation for Cartesian axes; the 

effective stress is defined as 
pijijij  '

, in which  is the so-called Biot’s parameter, accounting 
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for slight strain changes, and p is the pore pressure. In addition, iu  stands for the solid matrix 

displacement, iw  for the mean fluid velocity relative to the solid phase and ib  for the body force 

distribution. Inferior commas and overdots indicate partial space ( ijij xuu  /, ) and time 

( tuu ii  /
) derivatives, respectively.  The density of the mixture is defined as sfm  )1( 

, 

where s  and f
 are the density of the solid and fluid phase, respectively, and  is the porosity of the 

solid. 

 

 The constitutive law can be written, incrementally, as 

 

kijkkjikklklijklij ddddDd  '')(' 0    (2) 

 

where the last two terms account for the Zaremba-Jaumann rotational stress changes (negligible 

generally in small displacement computation) and ijklD
 is a fourth order tangential tensor defined by 

suitable state variables and the direction of the increment. The incremental strain 

))(2/1( ,, ijjiij dudud 
 and respective rotation 

))(2/1( ,, jiijij dudud 
 components are defined in 

the usual way from incremental displacement derivatives and 
0
ij  refers to initial strains caused by 

external actions such as temperature changes, creep, etc. 

For a unit control volume, assumed attached to the solid phase and moving with it, the momentum 
equilibrium equation for the fluid alone can be written as 

 

   /)(, , jijifiifii wwwubkwpk     (3) 

 

where k  is the isotropic permeability coefficient, according to D’Arcy’s  seepage law. 

 The equation of flow conservation for the fluid phase can be written in the following form 

 

imfiiii wswpQ  )/()/1( 0,     (4) 

 

where sf KKQ /)(/)/1(  
 and the compression modules of the solid and fluid phases are 

represented by sK  and fK
, respectively. The rate of volume changes of the fluid is 0s . 

 

2.1 Simplified equations – the u-p formulation 

 When the acceleration spectrum is composed of low frequencies (i.e., high frequencies 
contributions can be disregarded), the right hand side of equations (1), (3) and (4) involving the relative 
acceleration of the fluid are not important and can be omitted with confidence (Zienkiewicz and Shiomi, 

1984). The omission of such terms allows for iw  to be eliminated from the governing system of 
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equations, retaining only iu  and p as primary variables. The simplified final system of equations, also 

considering the dynamic seepage forcing term (i.e., iif uk ,
) as negligible, can be written as  

 

0,  imimjij bu    (5) 

0,)/1(, 0  sbkpQpk iifiiii    (6) 

 

 Equations (5) and (6), accompanied by appropriate initial and boundary conditions, define the 
model to be solved by the boundary element formulation here presented. Physical nonlinearities are 
taken into account (elastoplastic models) within the context of small strain theory. 

 

3 BOUNDARY ELEMENT SOLUTION 

The integral equations, which represent equations (5)-(6) for displacements and stresses, taking into 
account non-transient fundamental solutions and initial stress contributions (i.e., plastic strains and 
pore-pressures), are given by  
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 Taking the space derivative of equation (3), substituting the term iiw ,  from equation (4)  and 

considering the simplifications of section 2.1 yields Szpzp e
vol   21

2

 (see equation (6)), in which 

kQz /)/1(1  , kKz nD /)(2   and iif bksS ,0  
. For plane strain problems GK D /)21(2  , 

where  and G are the solid skeleton drained Poisson ratio and shear modulus, respectively.  The 
following integral equation is therefore obtained 
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where 
p

klijkl
P
ij D  

 is the “plastic” stress tensor and 
e
vol  ( klijkl

e
ij D  

) is the volumetric “elastic” 
stress. S stands for the domain forces related to equation (6). Also, i and q are tractions and fluxes, 
respectively, along the boundary . The fundamental solutions uik*,ik*, ikj*, uikj*,ikj*, ikjl*, p* and q*, 

included in equations (7), (8) and (9), are presented in appendix A (as well as the definition of ikg ).  

In order to solve equations (7)-(9), boundary elements and integration cells are employed to 

discretize the boundary and domain of the model, respectively. Hence, polynomial functions 
)(Xj
 

are used with time dependent nodal values, as indicated below 
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By substituting approximations of the type indicated by equation (10) into equations (7)-(9), the 
following system of equations can be defined in matrix form 
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where H, H' , H" , G, G' , G"   are influence matrices based on boundary integrals and M, M' , 

M" , W, W' , W"  are influence matrices based on domain integrals. C, C"  and 'Ŵ  are related to 

cik, c and ikg , respectively. In addition, m stands for the Biot-Kronecker parameter ij and U, P, T and 
Q are the displacement, pore-pressure, traction and flux vectors, respectively. O is the total stress 

vector, Oe and Op are the elastic and plastic (effective) stress vectors, respectively. Matrices S, S' , 
S"  are related to the domain forces in equations (7)-(9). In equations (11)-(13), the subscripts b and d 
denote, respectively, boundary and domain associated coefficients and unknowns (the computation of 
boundary stresses has been carried out using the locally interpolated element tractions and 
displacements; hence, the hypersingular boundary integral equation has been avoided). Also, I and 0 

represent identity and null matrices, respectively, and n stands for the current time ( tntn  , where 
t  is the adopted time-step).  

 

 Taking into account the definition 
pijijij  '

, equations (11)-(13) can be re-written, in a 
concise manner, as 

 

  nnn
p

nnnn SmPOWUMHUGTCU    (14) 

  nnnn
p

nnnn S'mPmPOW'UM'UH'TG'O  '   (15) 

nn
e

nnnn S"OW"PM"PH"QG"PC"     (16) 

 

where 'O  is the effective stress vector.   

 

 In the present work, the time-dependent problem is solved taking into account the Houbolt 
method (Houbolt, 1950) 

 

2321 /)452( tnnnnn   VVVVV   (17) 

)6/()291811( 321 tnnnnn   VVVVV   (18) 

 

 The substitution of relations (17)-(18) into equations (14)-(16) yields 
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)6/11( tn
e

nnn  OW""LQG"P"H   (21) 

 

where matrices H , 'H , "H  and vectors 
nL , 

n'L , 
n"L  are defined as 
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)/2( 2t MHCH   (22) 

)/2( 2t M'H''H   (23) 

)6/11( t M"H"C""H   (24) 

nnnnn t SUUUML   2321 /)45(   (25) 

nnnnn t S'UUUM''L   2321 /)45(  (26) 

nnnnnnnn t S"OOOW"PPPM""L   )6/())'2'9'18()2918(( 321321   (27) 

 

 Equations (19)-(21) can be reordered taking into account the boundary conditions of the problem. 
Assuming that X stands for the unknown values and Y for prescribed values along the boundary 
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Re-writing equations (28)-(30) in a concise manner, one obtains       

 

 nn
p

nn mPOWYX    (31) 

  nnn
p

nn mPmPO'W'YO '  (32) 

n
e

nn O"W"YX"   (33) 

 

where the vectors 
nY , 

n'Y , 
n"Y  are given by 

 

 nnn LYBAY  1  (34) 

nnnn 'LY'AY'B'Y   (35) 
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and matrices W , 'W , "W  are of the following form 

 

WAW 1  (37) 

W'AW'W   (38) 

)6/11(1 t  W""A"W   (39) 

 



Dynamic analysis of elastic-plastic saturated porous media by the boundary element method 

Cadernos de Engenharia de Estruturas, São Carlos, v. 12, n. 57, p. 39-56, 2010 

46 

 Based on equation (33) and taking into account the boundary conditions, the pore-pressure 
vector can be written as indicated by equation (40). Equation (32) can also be re-written as indicated 

by the following equation, in which mI'W'W )(0  . 

 

n
e

nn O"W"YP 00    (40) 

nn
p

nn P'WO'W'YO 0'   (41) 

 

 In order to solve the nonlinear problem, an iterative scheme will be considered to compute the 
stresses of the model. Once convergence in the stress iterative process is achieved, the 
displacements, pore-pressures etc. can be computed. The following incremental relation between 
elastic and elastoplastic stresses is here adopted 

 

'OOODO  eePp   (42) 

 

where PD  is the elastoplastic constitutive matrix and 'O  is the incremental effective stress.  

 

 The substitution of equation (40) into equation (41), taking into account relations (42), gives the 
final expression for the stress problem, as indicated bellow 

 

n
p

nn O'W'YO '  (43) 

 

where the vector 
n'Y  and the matrix 'W  are defined as 
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Finally, based on equations (43) and (42), the following iterative algorithm can be developed to 
solve the stress problem 

 

ΨOW )()1( k
e

k
p    (46) 

n
e

kn
p

k
I

nk OOW'YΨ )()()(    (47) 

 

where PIp DWIW 
 and 'WIW I . Once the stresses of the model are computed (algorithm 

(46)-(47)), the other unknowns of the problem can be evaluated by means of equations (33) and (31). 
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4 NUMERICAL APPLICATIONS 

In the present section, linear and nonlinear plane strain problems are considered. The results 
obtained with the proposed BE formulation are compared with analytical solutions, whenever possible, 
and other authors/methodologies results, illustrating the viability of the proposed formulation.  

 

4.1 Example 1 

On this first example, a one dimensional soil column is analyzed. A sketch of the model is shown in 
Figure 1(a). The top surface of the column is considered drained and loaded by a time Heaviside type 
function. The other surfaces of the model are undrained and have null prescribed displacements as 
indicated by Figure 1(a). The boundary elements and integration cells adopted are depicted in Figure 
1(b) (H = 10m).  

Two kinds of soil and load amplitudes are considered. The properties of the two different models 
under analysis are specified below: 

(i) Model 1 (de Boer et al., 1993; Soares Jr., 2008, 2010): for the present model, the load amplitude 
is 3 kN/m2. The physical properties of the soil are:  = 0.3 (Poisson); E = 14515880 N/m2 (Young 
Modulus); s = 2000 kg/m3 (mass density – solid phase); f = 1000 kg/m3 (mass density – fluid 
phase);  = 0.33 (porosity); k = 10-6 m4/Ns (permeability). The soil is incompressible.  

(ii) Model 2 (Schanz and Cheng, 2000, Soares Jr., 2008, 2010): for the present model, the load 
amplitude is 1 N/m2. The physical properties of the soil are:  = 0.2981; E = 254423077 N/m2; s = 
2700 kg/m3; f = 1000 kg/m3;  = 0.48; k = 3.55x10-9 m4/Ns. The soil is compressible and Ks = 
1.1x1010 N/m2 (compression modulus – solid phase); Kf = 3.3x109 N/m2 (compression modulus – 
fluid phase). 

In the case of Model 1, the element length is  = 0.5m and the time-step is given by t = 10-3s ( = 

(cd t) /   0.2, where cd is the dilatational wave velocity). For the Model 2 solution, the discretization 
adopted is analogous to the one depicted in Figure 1(b). However, two different BEM mesh sizes have 

been considered:  = 0.625m; t = 5x10-4s (  1/3) and  = 0.125m; t = 1x10-4s (  1/3). 

In Figure 2, vertical displacements at point A are depicted, taking into account Model 1. As one can 
observe, the results are in good agreement with the analytical ones provided by de Boer et al. (1993), 
as well as with other authors’ results (e.g., Diebels and Ehlers, 1996). In Figures 3 and 4, vertical 
displacements at point A and pore-pressures at point B are depicted, respectively, taking into account 
Model 2 and different BEM discretization procedures. Once again the results are in good agreement 
with the ones provided by the semi-analytical processes presented by Dubner and Abate (1968), and 
Schanz and Cheng (2000).  

 

4.2 Example 2 

In this second example a 2-D soil strip is analyzed. A sketch of the model is depicted in Figure 5(a) 
(a = 5m, b = 10m and c = 1m). The FEM and BEM meshes adopted for the problem solution are shown 
in Figure 5(b) (symmetry is taken into account). For the FEM analysis, 100 linear quadrilateral finite 
elements were adopted; 200 linear triangular integration cells and 40 linear boundary elements were 
adopted for the BEM analysis. 

 

The soil strip is loaded as indicted in Figure 5(a). The surface under the applied load is considered 
undrained, as well as the vertical and bottom surfaces. The properties of the soil are:  = 0.2; E = 107 
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N/m2; s = 2538.5 kg/m3; f = 1000 kg/m3;  = 0.35; k = 10-7 m4/Ns. The soil fluid phase is 
compressible and Kf = 3.3x109 N/m2. A perfectly plastic material obeying the Mohr-Coulomb yield 
criterion is assumed, where c = 200 N/m2 (cohesion) and  = 10o (internal friction angle).  

 

The time-step considered for both FEM and BEM solutions is t = 2x10-3s. Vertical displacement 
results at point A (see Figure 5(a)) are depicted in Figure 6, taking into account linear and nonlinear 
analyses. In Figure 7, the pore-pressure distribution over the FEM and BEM meshes are depicted at 
time t = 0.8s. Good agreement between the FEM and BEM solutions is seen to be obtained.  

 

5 CONCLUSIONS 

A time domain BEM formulation for the dynamic analysis of porous media was presented. Time 
independent fundamental solutions were employed originating an approach that requires domain 
discretization, but, on the other hand, is quite amenable to deal with elastoplastic models. The general 
pore-dynamic equations were initially discussed, however, the numerical methodology developed was 
based, as it is usual, on the simplified equations that are obtained when contributions of high frequency 
components of the spectrum can be disregarded. A detailed description of the BEM (integral and 
matrix) equations and solution procedures, which resulted from a direct coupling approach, was 
presented. Accurate results were obtained for the examples considered, showing that the coupling 
methodology discussed here leads to robust algorithms. The present paper extends the applicability of 
boundary elements to model complex pore-dynamic problems.  
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APPENDIX A. FUNDAMENTAL SOLUTIONS 

The fundamental solution components that appear in equations (7)-(9), taking into account plane strain 

problems, are defined as 
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where nrrn  /  and  n is the outward unit vector normal to the Γ boundary. The free term )( jlik Xg  is 

given by 
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CAPTION TO THE FIGURES 

Figure 1 – 1-D problem: (a) sketch of the model; (b) boundary element and internal cell discretization. 
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Figure 2 – Displacement at point A for the incompressible soil column. 

Figure 3 – Displacement at point A for the compressible soil column: (a) sxt 4105   and m625.0 ; 

(b) sxt 4101   and m125.0 . 

Figure 4 – Pore-pressure at point B for the compressible soil column: (a) sxt 4105   and 

m625.0 ; (b) sxt 4101   and m125.0 . 

Figure 5 – 2-D problem: (a) sketch of the model; (b) FEM and BEM discretizations.  

Figure 6 – Displacement at point A considering linear and nonlinear analyses.  

Figure 7 – Pore-pressure distribution for FEM and BEM at t = 0.8s: (a) elastic analysis; (b) elastoplastic 

analysis. 
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