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A b s t r a c t  

This paper addresses to analysis of crack propagation in quasi-brittle materials using the boundary element 
method (BEM). BEM has been widely used to solve many complex engineering problems, especially those where 
its mesh dimension reduction includes advantages in the modelling. The non-linear formulations developed are 
based on the dual BEM, in which singular and hyper-singular integral equations are adopted. The first 
formulation uses the concept of constant operator, in which the corrections on the non-linear system of equations 
are performed only by applying appropriate tractions along the crack surfaces. The second proposed BEM 
formulation is an implicit technique based on the use of a tangent operator. This formulation is accurate, stable 
and always requires less iterations to reach the equilibrium within a given load increment in comparison with the 
classical approach. Examples of problems of crack growth are shown to illustrate the performance of these two 
formulations. 
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1 INTRODUCTION 

During the last few years, fracture mechanics problems have received large interest by the 
scientific community, because crack growth can explain the collapse of structures. Due to the load 
values or imposed displacements beyond a critical level, micro-crack concentration increases as well 
as the structural damage. The micro-cracks growth forms a macro-crack (coalescence phenomenon) 
who leads to the structural failure. The Hillerborg cohesive crack model is an idealization that 
represents well this effect, particularly for the analysis of quasi-brittle materials, (HILLERBORG et al., 
1976) and (CARPINTERI, 1989). A fictitious crack approximates the dissipation zone since the process 
begins.  

To accurate modelling this effect in complex engineering structures, numerical models are 
required. The boundary element method (BEM) has already been recognized as an accurate and 
efficient numerical technique to deal properly with many problems in engineering. Especially, those 
related to fracture mechanics, where its mesh dimension reduction is an important advantage. 
Considering these problems, only boundary and crack surface discretizations are required. 
Consequently, BEM requires less computational effort to generate new elements in order to model 
crack growth. Some classical BEM formulations were proposed in the literature demonstrating the 
efficiency and accuracy of this method in fracture problems. In this context, it is worth to mention 
(CRUSE, 1988) and (CROUCH, 1976), where Green’s functions and displacement discontinuity 
method were adopted, respectively. (PORTELA et al., 1992) developed the dual boundary element 
method (DBEM), in which singular and hyper-singular integral equations are written for collocation 
points positioned at the opposite crack surfaces. Considering multiple crack propagation, some BEM 
models may be found in the literature. The problems of multiple crack-hole interaction, (YAN, 2006) 
and (KEBIR et al., 2006), and multiple crack interaction, (LEONEL; VENTURINI a, 2010) and (YAN, 
2005), for instance, have been successfully analysed. In these applications, however, non-linear crack 
propagation has not been considered. 
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Non-linear analysis with BEM has been used since the 1970s. The first works were simple but 
capable to demonstrate that the method can be applied to simulate these kinds of complex problems, 
(RICARDELLA, 1973) and (KUMAR; MUKHERJEE, 1977). The non-linear solution for the first BEM 
formulations was based on the application of a correcting stress field, keeping constant all relevant 
matrices and therefore leading to a large number of iterations. Recently, more reliable solution 
techniques based on the use of tangent operators have been proposed, (POON et al., 1998), (BOTTA 
et al., 2005) and (LEONEL; VENTURINI b, 2010). They require less iterations and are more stable and 
accurate than classical approaches. 

Considering non-linear crack growth analysis using BEM, the solution technique adopted for 
the majority of the researchers is based on iterative schemes that find traction values along crack 
surfaces that satisfy an adopted criterion, (SALEH; ALIABADI, 1995). This process is simple and all 
relevant matrices are kept constant during the process. Again, this kind of technique requires a large 
number of iterations to achieve the equilibrium for a single load increment. Moreover, for the cases of 
complex pattern of cracks, for instance with a solid containing many micro-crack, this process can be 
either inaccurate or unstable.  

In this work, non-linear crack growth analysis is developed, considering two-dimensional 
domains and quasi-brittle materials. To deal properly with the non-linear problem, two solution 
techniques were used. The first approach is the classical procedure, where the corrections on the 
cohesive crack tractions are performed by applying a non-equilibrated tractions vector. The second 
approach considered uses a tangent operator, which has been derived, and the system of equations is 
solved using the Newton–Raphson method. These models are used to analyze cohesive crack 
propagation problems where the stiffness reduction due the cracks growth is a major problem. Besides 
comparing the solutions obtained by using the two discussed technique, whenever possible the results 
are compared with experimental results. 

 

2 COHESIVE CRACK MODEL 

The linear elastic fracture mechanics has been an important approach to solve many problems 
in structural engineering, particularly those where the dissipation zone surrounding cracks are reduced 
enough to be possible to neglect its non-linear effects. However, for quasi-brittle and also for some 
ductile materials, the damaged zone ahead of the crack tip is large enough to produce non-linear 
effects that cannot be neglected. The cohesive model is an appropriate approach to take into account 
these effects. In this model, the dissipation phenomenon is assumed to occur along the crack path 
ahead of crack tip, therefore reducing by one the dimension of the dissipation zone. The first models 
where the dissipation zone was reduced either to a line for 2D problems or to a surface for 3D 
problems are due to (DUGDALE, 1960) and (BARENBLATT, 1962) who have proposed crack models 
to represent particularly the ductile material behaviour. The cohesive crack model appropriate to quasi-
brittle materials is due to (HILLERBORG et al., 1976). 

In this work, the dissipation process, which takes place on a region ahead of the crack tip, is 
approximated by a simple softening law, assumed along a fictitious crack. This law relates the fictitious 
crack opening displacement, u , to tensile surface forces or cohesive forces, tf , applied along the crack 

surfaces. Figure 1 illustrates the cohesive forces distribution for the (HILLERBORG et al., 1976) model. 
As can be seen in this figure, the cohesive forces acting along the fictitious crack of length equal to 

fl disappear after a critical crack opening value, cu . The crack starts opening when the cohesive 

forces reaches a critical tensile value c
tf . For values of the tensile stresses lesser than c

tf  the crack 

remains closed. For values of the crack opening displacement larger than cu , the cohesive forces are 

zero. 
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Figure 1 – Cohesive forces distribution. Hillerborg et al. (1976). 

 

Several cohesive crack laws relating cohesive forces and crack opening displacement have 
already been proposed in the literature. Three of them are often adopted to carry out crack growth 
analysis in quasi-brittle materials. The simplest law is given by a linear function relating the cohesive 
forces to the fictitious crack opening displacement smaller than the critical value, cu . For fictitious 

crack openings larger than cu , cohesive forces are assumed equal to zero, Figure 2a. The relations 

that represent the linear cohesive law are given by: 
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An alternative model relating cohesive forces and fictitious crack opening displacement is the 
bi-linear model, Figure 2b, which is given by the following equations: 
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For the bi-linear model, the variables '' '',t cf u and u   are defined by the following 

expressions:  
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The third cohesive crack model considered in this work is represented by an exponential law, 
Figure 2c. Equation (4) gives the analytical expressions for this cohesive model: 
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Figure 2 – Cohesive models. (a) linear model; (b) bi-linear model, (c) exponential model. 

 

3 DUAL BOUNDARY ELEMENT METHOD (DBEM) 

The boundary element method has been widely applied in various engineering fields, such as 
contact problems, fatigue and fracture mechanics, due to its high precision and robustness in modelling 
strong stress concentration (i.e. singular stresses and displacements). Considering a two-dimensional 
homogeneous elastic domain, , with boundary, . The equilibrium equation, written in terms of 
displacements, is given by: 

, ,
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                                                                           (5) 

where   is the shear modulus,   is the Poisson’s ratio, iu  are components of the displacement field, 

and ib are body forces. Using Betti’s theorem, the singular integral representation, written in terms of 

displacements can be obtained, with no body forces: 

* *( , ) ( ) ( , ) ( ) ( ) ( , )lk k lk k k lkc f c u f P f c u c d P c u f c d
 

                                                          (6) 

where kP and ku are tractions and displacements on the boundary, respectively,  indicates the 

Cauchy principal value, the free term lkc  is equal to lk  for smooth boundaries, and *
lkP  and *

lku are the 

fundamental solutions for tractions and displacements.  

Equation (6) is sufficient to construct the system of algebraic equations to analyse 2D elastic 
domains.  For solids with cracks, however, using only this equation to assemble the system of 
equations will lead to a singular matrix as both crack surfaces are located along the same geometrical 
path. Although possible using only the singular integral representation, Eq. (6) requires the definition of 
a finite gap between the two crack surfaces and a very accurate integral scheme to compute the 
integral along the quasi singular elements.  

Several BEM formulations have been proposed in the literature to properly deal with crack 
problems, as discussed in the introduction part. The DBEM formulation is probably the most popular 
BEM formulation to analysis of arbitrary crack growth. In this formulation, singular integral 
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representation, Eq. (6), is adopted to determine the algebraic representation related to the collocation 
points defined along one crack surface, while hyper-singular integral representation is chosen to obtain 
the algebraic representation related to the collocation points placed along the opposite crack surface. 
Singular representation is applied to the collocation points on the boundary, which is sufficient to obtain 
the required algebraic relations. 

The hyper-singular integral, written in terms of traction, is obtained from Eq. (6). First this 
equation, written for an internal collocation point, is differentiated to obtain the integral representation in 
terms of strains. Then, using the Hooke’s law, the stress integral representation is achieved. Finally, 
the integral representation of stresses for a boundary collocation point is obtained by carrying out the 
relevant limits. The Cauchy formula is applied to obtain the traction representation as follows: 

1
( ) ( , ) ( ) ( , ) ( )

2 j k kij k k kij kP f S f c u c d D f c P c d 
 

                                                              (7) 

where  indicates the Hadamard finite part, and terms Skij and Dkij contain the new kernels computed 

from Plk
* and ulk

* .  

Equations (6) and (7) are, as usual, transformed to algebraic relations by dividing the 
boundary and the crack surfaces into elements along which displacements and tractions are 
approximated. Besides that, one has to select a convenient number of collocation points to obtain the 
algebraic representations. The algebraic equations for boundary nodes are calculated using boundary 
collocation points either at the element ends, therefore coincident with nodes, or along the element 
when displacement and traction discontinuities are to be enforced. Thus, using the discretized form of 
Eq. (6), applied only to boundary collocation points, the usual system of algebraic equations can be 
obtained, relating boundary values, as follows: 

b f b f
b b b f b b b fH U H U G P G P                                                                           (8) 

where b fU and U are displacements assigned to boundary (b) and to crack surface nodes (f), bP  gives 

the boundary tractions, while fP represents the tractions acting along the crack surfaces; 

, ,b f b f
b b b bH H G and G are the corresponding matrices to take into account displacements and tractions 

effects, the subscript b indicates that the collocation point is on the boundary and the superscripts 
specify the boundary (b) or crack surface (f) values. 

On the crack surfaces, boundary elements, nodes and collocation points at each crack lip 
have to be defined. Thus, for the crack surfaces one has two opposite collocations points that originate 
four algebraic independent relations, corresponding to four unknown crack surface values, two 
displacements and two tractions. Moreover, as the hyper-singular representation Eq. (7) is considered, 
it is convenient to use collocation points defined along the element and not coincident with the 
discretization nodes. The node values of crack displacements and tractions are kept at the element 
end. Thus, from the discretized forms of Equations (6) and (7), the set of algebraic equations below 
can be written: 

b f b f
f b f f f b f fH U H U G P G P                                                                           (9) 

where the subscript f in the matrices x x
f fH and G indicates equation written for collocation points along 

the crack surface. 

The DBEM formulation adopted in this paper uses continuous and discontinuous linear 
elements along the external boundary and only discontinuous linear elements along the crack surfaces. 
The integrals in Eq. (6) are evaluated by using a Gauss–Legendre numerical scheme accomplished 
with a sub-element technique. The integrals appearing in Eq. (7) are calculated using analytical 



Crack growth analysis in quasi-brittle materials using a non-linear Boundary Element Formulation 

Cadernos de Engenharia de Estruturas, São Carlos, v. 12, n. 57, p. 81-94, 2010 

86 

expressions. Based on these procedures, Equations (6) and (7) are transformed to algebraic 
representations with very low integration error. 

Using algebraic equations (8) and (9) together with the cohesive crack model described in the 
previous section one can develop an appropriate algorithm to analyze crack growth problems as will be 
shown in the next section. 

 

4 SOLUTION TECHNIQUE. TANGENT OPERATOR 

The analysis of quasi-brittle fractured solids leads to the solution of a non-linear problem that 
always requires the use of an iterative process within each time interval or load step. In the context of 
BEM, a technique based on the use of constant matrices is often adopted, (SALEH; ALIABADI, 1995), 
with satisfactory results. At each load increment the algebraic equations are kept constant. The only 
modification required is to reapply a non-equilibrated traction vector along the crack surfaces to 
reestablish the equilibrium lost when the constitutive model is imposed. This technique is simple, but 
usually requires a large number of iterations to achieve the equilibrium within a load increment, which 
might lead to unstable solutions. Non-linear BEM formulations based on more elaborated solution 
techniques have shown to be more accurate and stable. For instance, non-linear BEM formulations 
based on the use of tangent operators have demonstrated to lead to accurate and stable solutions 
when modelling complex plastic and damaged solids characterized by exhibiting localization and 
bifurcation phenomena, (BOTTA et al., 2005) and (LEONEL; VENTURINI b, 2010). 

To derive the formulation based on the use of tangent operator, the equations (8) and (9) have 
to be modified. The tractions and displacements values on the crack surfaces will be separated 
according its position, at the right or left crack surface. 

b fr f f f b fr f f f
b b b r b b b b r bH U H U H U G P G P G P    l l

l l                                    (10) 

b fr f f f b fr f f f
f b f r f f b f r fH U H U H U G P G P G P    l l

l l                                    (11) 

where the subscripts r and l  are related to right and left crack surfaces, respectively. 

Equations (10) and (11) can be further modified. First by transforming the crack surface 

values, displacements and tractions, into local coordinates  ,n s , in which n  and s  are coordinate 

axes perpendicular and parallel to each crack surface, respectively: 

b frs f frn f f s f f n f b frs f frn f f s f f n f
b b b rs b rn b s b n b b b rs b rn b s b nH U H U H U H U H U G P G P G P G P G P        l l l l

l l l l                 (12) 

b frs f frn f f s f f n f b frs f frn f f s f f n f
f b f rs f rn f s f n f b f rs f rn f s f nH U H U H U H U H U G P G P G P G P G P        l l l l

l l l l                    (13) 

After these modifications, the relative displacements on the crack surfaces can be included in 
the formulation. The crack relative displacements on directions parallel and perpendicular to the crack 

surfaces, su and nu  respectively, are used to replace the displacement components along the left crack 

side. 

f f f f
s s rs s s rsu U U U u U    l l                                               (14) 

f f f f
n n rn n n rnu U U U u U    l l                                               (15) 

After these modifications, equations (12) and (13) can be rewritten as: 
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   b frs f s f frn f n f f s f n
b b b b rs b b rn b s b nH U H H U H H U H u H u      l l l l      

b frs f frn f f s f f n f
b b b rs b rn b s b nG P G P G P G P G P    l l

l l                           (16) 

   b frs f s f frn f n f f s f n
f b f f rs f f rn f s f nH U H H U H H U H u H u      l l l l

b frs f frn f f s f f n f
f b f rs f rn f s f nG P G P G P G P G P    l l

l l                           (17) 

Equations (16) and (17) represent the equilibrium of a solid containing cracks. For the case of 
non-linear fracture problems, these two last equations have to be written and solved within the context 
of incremental problems. Thus, Equations (16) and (17) have to be conveniently rewritten in its 
incremental forms. Firstly, these equations have to be written in rates and then transformed into their 
incremental forms by performing the relevant time integrals over a typical time increment 

1n nt t t    . For the postulated problem, the corresponding incremental forms of Equations (16) 

and (17) is simple and obtained by replacing all boundary and crack values x by their increments x . 

For a given load increment, Equations (16) and (17) can be further modified by applying the 
known boundary conditions. As usual in BEM formulations, all unknown boundary values are stored in 

a vector x  and cumulate the known boundary values effects into independent vectors bf and ff . 

After these modifications, the functions below can be written, to express the equilibrium of a solid 
containing cracks: 

   frs f s f frn f n f f s f n
b b b b rs b b rn b s b nY a x H H U H H U H u H u            l l l l

   frs f s f frn f s f
b b b s b b nf G G f G G f      l l                           (18) 

   frs f s f frn f n f f s f n
f f f f rs f f rn f s f nY a x H H U H H U H u H u            l l l l

   frs f s f frn f s f
f f f s f f nf G G f G G f      l l                           (19) 

In Equations (18) and (19), the matrices ba and fa contain the coefficients of matrices referred 

to unknown boundary displacements and tractions. These two last equations can be further modified to 
emphasize the variables related to cohesive criterion in the non-linear process. These variables are de 
crack relative displacement and the traction, both in n direction. Then, the two last equations above can 
be rewritten as: 

 f n frn f n f
b b b n b b b nY A X H u F G G f       l l                           (20) 

 f n frn f n f
f f f n f f f nY A X H u F G G f       l l                                      (21) 

In these equations, the matrices bA and fA contain the coefficients of matrices referred to 

unknown boundary and crack displacements increments ( , f
b rsU U   and f

rnU ), boundary tractions 

( bP ), and the crack relative displacement at the s direction ( su ). The known boundary and crack 

values, this last one only at the s direction, are taken into account with independent vectors bF and 

fF . Along the crack surfaces, only the traction components in n direction are considered in the non-

linear process. The traction components in direction s are neglected according to the cohesive crack 
model. 

The non-linear system of equations given in (20) and (21) can be solved by applying Newton–
Raphson’s scheme, for which an iterative process may be required to achieve the equilibrium. By 
linearizing Equations (20) and (21) and using only the first term of Taylor’s expansion one has: 
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The derivate terms in Equations (22) and (23) give the global tangent operator [C]. Thus, 
carrying out all indicated derivates in these two last equations, the tangent operator for the case of 
cohesive crack can be obtained. Therefore: 

 
   

 

f n frn f n f
b b b b n n

f n frn f n f
f f f f n n

A H G G f u
C

A H G G f u

       
           

l l

l l
                                              (24) 

where the derivate f
n nf u  is obtained by differentiating properly the cohesive crack laws given in 

section 2. Thus, the corrections i
kX  and i

nku are obtained by solving the linearized system 

represented by equations (22) and (23): 

 
 
 

1

ii
b nkk

i i
nk f nk

Y uX
C

u Y u





       

     

                                                                                 (25) 

Within a given load increment k the solution is obtained by cumulating the corrections 
calculated using Eq.(25) 

1i i i
k k kX X X                                                                                                                            (26) 

1i i i
nk nk nku u u                                                                                                                            (27) 

After solving the non-linear system of equations in terms of kX  and nku  all variables have to 

be updated before applying the next load increment. The tolerance to stop the iterative process within 
an increment of load is applied on the variation of the crack opening displacement corrections, i.e, 

1i iu u tolerance  . 

 

5 CRACK GROWTH SCHEME 

To determine when the cracks grow, the real stress state at the crack tip is compared with an 
ultimate stress state, given by an adopted criterion. In this paper, the ultimate stresses are calculated 
using the Rankine’s model, which has also been used by (SALEH; ALIABADI, 1995). To achieve 
accurately the stress state at the tip, a polynomial interpolation process has been adopted to take into 
account the continuity of the stresses along all points surrounding the crack tip. Several internal points 
are defined ahead of crack tip, as shown in Figure 3. 
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Figure 3 – Distribution of internal points ahead of the crack tip. 

 

The number of semi-circles and the internal points along each one can be chosen according 
to the desired accuracy. The polynomial degree is chosen according the number of the semi-circles. 
For the case illustrated in Figure 3, the interpolation process is performed using third degree 
polynomial. The interpolation is performed for each radial line and then the stress state at the tip is 
obtained by extrapolation. The real stress state at the tip is then obtained by averaging the values of all 
calculated values. The direction of the new crack length increment is given by the direction 
perpendicular to the maximum circumferential tensile stress. According this criterion, the crack growth 
direction is given by: 

1

xy
p

y

ArcTan



 
 

    
                                                                                                                   (28) 

where 1  is the maximum tensile stress value. 

The new crack appears when the tensile stress at the crack tip is larger than the ultimate 
tensile value given by Rankine’s criterion. The crack length increment is determined adjusting the size 
of the element in such a way that the stress state at the new crack tip, calculated by the maximum 
tensile stress criterion, is equal to the ultimate tensile. 

 

6 EXAMPLES 

Two examples were chosen to illustrate the efficiency of the proposed numerical model in non-
linear crack growth analysis. In the first example, a four point bending concrete structure is analyzed 
and a four point bending multi-fractured concrete structure is considered in the second example. 

 

6.1 Concrete four point bending beam 

The four point beam considered in this example is shown in Figure 4. The geometry is given 
by its length of 675mm, height of 150mm and central notch 75mm deep. The material properties were 
taken from (GALVEZ et al., 1998), who have performed a laboratory test: tensile strength 3.0c

tf MPa , 

Young’s modulus 37.000E MPa , Poisson ratio 0.20   and fracture energy 69fG N m . 
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Figure 4 – Four point bending beam. Dimensions in mm. 

 

For the present analysis three cohesive laws were used: linear, bi-linear and exponential. The 
load was applied for all cases in 24 increments and the adopted tolerance within each increment was 

510 . The two non-linear system solution techniques discussed previously were tested: (a) using 
constant operator (b) using tangent operator. The results obtained are given in Figure 5 where the 
tangent operator solutions are identified by the symbol CTO. The other curves are obtained by using 
the constant operator. 

 

 
Figure 5 – Load x Displacement curves. 

 

Although all obtained results are in accordance with the experimental values, it seems that the 
solutions obtained by the tangent operator are more accurate. Moreover, the tangent operator gives 
always more stable solution requiring a reduced number of iteration at each load increment. It can be 
seen that the descendent branch obtained by using constant operator is slightly different due to the 
cumulated errors coming from the large number of post-pick iterations. Figure 6 illustrates the crack 
growth path during the beam loading, leading to rupture surfaces similar than the ones experimentally 
obtained. To emphasize the large differences between these two system solution schemes, the 
iteration numbers to reach the equilibrium at some specific load increments are given in Figure 7. It is 
important to observe that the constant operator scheme requires a very large number of iterations after 
pick, and this may lead to less accurate solutions. 
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Figure 6 – Crack growth path during the loading process. 

 
 

 
Figure 7 – Required number of iterations for the tested solution techniques. 

 

6.2 Multi-fractured concrete structure 

In this application, the structure presented in Figure 8 was analyzed. This is a concrete beam 
subjected to a four bending test. This structure has 1.5 m of length and 0.50 m of high as shown in the 
same figure. The material properties adopted for this application were: tensile strength 3.0c

tf MPa , 

Young’s modulus 30.000E MPa , Poisson ratio 0.20   and fracture energy 75fG N m . 

In this analysis, eleven cracks were distributed along the lower structural boundary as 
illustrated in Figure 9. In the same figure is also presented the BEM mesh considered for this analysis. 
Therefore, the performance of the proposed non-linear formulation in the case of multiple cracks is 
evaluated. Only two cohesive crack laws were considered in this example: linear and bi-linear. Both 
cohesive laws were coupled with tangent operator formulation. The load was applied in 25 increments 

and the adopted tolerance within each increment was 510 . 
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Figure 8 – Dimensions and boundary conditions for the structure. 

 
 

 
Figure 9 – Crack distribution and BEM mesh adopted.  

 

The load displacement curves obtained in the analysis are shown in Figure 10. According this 
figure, it can be observed very similar results to those illustrated in Figure 5, i.e, the structural 
behaviour achieved by the linear CTO model is more rigid than those obtained by bi-linear CTO model. 
In both cases the softening branch was verified, after equal results for pre-pick structural behaviour. 

 

 
Figure 10 – Load x Displacement curves. 

 
 

Figure 11 illustrates the crack growth path observed until the last load step applied. According 
this figure, it can be observed that only five of eleven cracks have propagated. 
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Figure 11 – Crack growth path. 

 

7 CONCLUSION 

In this paper, the crack growth process in quasi-brittle materials has been studied. This 
complex structural problem can be modelled by solving a non-linear system of equations which 
appears due the dependency between crack opening displacement and tractions along the normal 
direction to the crack lips. To simulate this non-linear structural problem, BEM has shown to be an 
accurate and efficient alternative. Two non-linear BEM formulations have been developed and 
implemented in this paper. The first applies a constant operator, where the non-linear problem is 
solved by keeping constant all relevant matrices and calculating, at each load step, the non-
equilibrated vector force. The second approach is developed by using a tangent operator. In this case, 
the derivate set of the non-linear equations is used and the problem is faster solved. The formulation 
based on the tangent operator has shown to be more stable and lead to more accurate results in 
comparison with the classical procedure. The use of tangent operator has shown to be always 
recommended to analyze crack propagation problems, particularly for the cases where the after pick 
region is reached. 

This kind of formulation may be applied in other non-linear problems in the future. Contact 
problems and crack growth in reinforced structures, for instance, can be modelled using this efficient 
approach. 
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